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There are a number of apparently disparate problems in multifractal scaling whose solutions have
remained unclear, ranging from rather pathological cases where the standard Legendre transformations
do not produce effective measures for the Holder exponent and Hausdorff-Besicovitch dimension to the
problem of describing the scaling of point-point correlation functions of moments of multifractal mea-
sures. We prove that an equivalent statement of multifractal scaling is the invariance of the generating
functions of the scaling transformation. We show that the invariance of the generating functions is what
allows the moment integrals to scale with simple power laws. We show that this definition can be suc-
cessfully extended to cover the scaling of point-point correlation functions of moments of multifractal
measures. Previous attempts to solve this problem have lead to non-scale-invariant behavior, presented
as an inconsistency by Cates and Deutsch [Phys. Rev. A 35, 4907 (1987)]. We propose that the invari-
ance of generating functions under their own transformations is the central defining characteristic of

scale invariance in multifractal scaling.

PACS number(s): 64.60.Ak, 02.90.+p, 05.70.Jk, 02.50. —r

I. INTRODUCTION

Multifractal scaling emerged as a theory holding great
promise in solving some of the more intractable problems
in fractal [1] growth [2]. It had immediate application to
diffusion-limited growth [3-6] percolation and the
random-resistor network [7-9], dynamical systems [10],
and to the dissipation of energy in the eddy patterns of
turbulent flow [11]. Many of the physically important
parameters of these systems, such as the growth-sites dis-
tribution in diffusion-limited aggregation (DLA) [12,
3-6], or the energy distribution in turbulent flow [11],
show a far more complicated scaling than the apparently
simple fractal scaling of the geometry of the system. In
this case, the size of the set of parameters p that scale
p ~€% for some Holder exponent a scales as /'@ for a
Hausdorff-Besicovitch dimension f (a). Thus, for each of
the o’s in a continuum there is a fractal dimension. Since
these physical parameters govern the dynamics of their
systems, multifractal scaling offered a key to unraveling
the physics behind complicated fractal systems.

Yet, there has emerged very little new insight into the
behavior of physical systems from multifractal scaling.
Even in DLA, one of the most important features, the
spatial behavior of the screening, is unavailable in the
straight growth-sites probabilities distribution. Further,
the ad hoc nature of the standard formulation of mul-
tifractal scaling leaves something to be desired, and has
motivated several attempts to formulate multifractals
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from more systematic approaches [13—15]. Definitions
based solely on the extremization of the exponents which
leads to the Legendre transformations also fail in patho-
logical cases, which leads to the proliferation of yet more
definitions on an ad hoc basis to cover these special cases
[11,16]. Attempts to develop the consistent scaling of
spatial correlations of multifractal measures based on the
same kind of ad hoc formulation of multifractals also fails
[17]. It seems clear that some form of systematic devel-
opment that produces consistent-scale-invariant forms is
necessary.

We note Coniglio [14] showed that transformation
functions exhibiting power-law scaling necessarily have
generating functions that are invariant under their own
transformations. We approach the problem from the op-
posite side, as in Platt and Family [13], but we adapt the
invariance of the generating functions under their own
transformations as the definition of scale invariance.
Since invariance of the generators of the transformations
is both necessary and sufficient for multifractal scaling, it
may be taken as a definition. We show that it necessarily
follows that the scaling form of generating functions in-
variant under their own scaling necessarily demonstrates
power-law scaling. We further show that it is that invari-
ance that guarantees that the moments of the multifractal
measures also demonstrate power-law scaling. Lastly, it
is seen throughout the development that all the features
of the standard formulation of multifractal scaling are
preserved.
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Since the foundation of the inconsistency that Cates
and Deutsch derived was that the moment distributions

did not scale commensurately with the distribution (that

is, the scaling formulation was not scale invariant) [17], it
seems clear that a formulation of the scaling of spatial
correlations of moments of multifractal measures must
follow from a foundation that guarantees consistency in
the scaling transformations for the distributions and mo-
ments. Part of the problem is then to try to understand
what about the nature of the scaling transformations
caused them to not be consistent or scale invariant. We
apply the same formalism developed above and show that
the moments scale consistently with the distribution
functions. We extract a form of scaling law similar to the
one Cates and Deutsch sought, except that the result is
scale invariant, and avoids the paradox.

As in the simple multifractal scaling example, it is the
invariance of the generating functions that allows the mo-
ment correlation functions to scale consistently with the
distribution function. We note that the invariance of the
generating functions under their own transformation
functions is a statement equivalent to other statements of
scale invariance when applied to traditional multifractal
scaling since it is both necessary and sufficient for power-
law transformation functions. Further, this technique is
extended to this problem more easily and systematically
than the traditional approach. We conclude that the
statement of the invariance of generating functions may
be taken as a particularly useful definition of scale invari-
ance in multifractal scaling. Further, the scaling ex-
ponents are now associated with generators of scaling
transformation functions, which have meaning even
where the extremization techniques that lead to Legendre
transformations break down. This reduces the need for
the proliferation of special definitions to cover pathologi-
cal cases.

In Sec. IT measure distribution functions are construct-
ed from the moment definitions, scaling transformations
are defined, and group conditions are imposed. The in-
variance of the generating functions under their own
transformations is imposed to solve the group equations.
In Sec. III the relationship between the scaling of the mo-
ments and the transformations that scale the distributions
is explored. The moment integral is renormalized, and
the relationship between the scaling of the moments and
the distribution is established. In Sec. IV the technique is
extended to the scaling of point-point correlation func-
tions of moments of multifractal measures.

II. SCALING GROUP

In this section the distribution of multifractal measures
is defined. Transformation functions are defined on the
distribution. Group conditions are imposed on the trans-
formation functions. The invariance of the generating
functions is imposed on the transformation functions,
and the group equations are solved.

A fractal is covered by a set I of balls i €T of size or
norm €. A measure p;(€) is defined on each i €. Mo-
ments at resolution € may be defined
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Z(g,e)= 3 pie) (1)

or
Z(g,e)= [d%pix,e) . 2)

In the standard formulation, the p;’s are said to scale as
p;~€ ¢ and the number of the p;’s that scale with a
scales as €/, This presentation suffers from the
difficulty that there is no identification between the p;’s at
one € and those at another € since the coverings are both
arbitrary and very dependent in a nontrivial way on €
[13,15]. The moments may be written in terms of a dis-
tribution by writing

Z(g,e)= [d [dp ps(p —p(x,€)) ,
which leads to the expression of the moments
Z(g,e)= [dppin(p,e), (3)
in terms of the distribution function »n (p,€), where
n(p,e)=fddx6(p —p(x,€)) . (4)

A scaling transformation T (s) may be defined which
relates the distribution at length scale € to the distribu-
tion at length scale €/s. Such a transformation will have
a form

n(p,e)dp—T (s)n(p,e)dp

=w(p,€,5)n pu(p,e,s),f d(pu(p,e,s)) . (5)

The functions u and w multiply the variable p and the
distribution n since the distributions are to be rescaled by
the transformation. The nature of the group equations
that emerge from this formulation must reflect the scal-
ing nature of the transformation. The rescaling factor u
is included in the differential to account for the Jacobian.
The scaling constraint will be

T (s)n(p,e)dp =n(p,e)dp . (6)

The group conditions to be imposed on the scaling
transformations are identity and product. Namely, re-
scaling by a factor of s =1 should return the same distri-
bution, whereas rescaling by a factor of s, followed by re-
scaling by a factor of s, should yield the same results as
rescaling by the product s;s, all at the same time. These
may be expressed as

T(1)=1, (7
T(s15,)=T(s;)eT(s,) . (8)

These constraints may be expressed in terms of the trans-
formation functions as

u(p,e,1)=1, 9)
w(p,e,1)=1, (10)

and
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u(p,e,s.8,)=u(p,€,s)u
S

pu (p,e,sl),i,szj ,

w(p,€,5.5,)=w(p, €5, w
1

pu(p,€,s, ),;€—~,s2 ] . (12)

The differential group equations may be obtained from
the above by taking the partial 8/3s,, and then taking
s,— 1. The results are

du Ju  du
S, Y(p,e)u (p,e,s)+pT(p,e)—ap €3¢ (13)
dw Jw  dw
s 3 —W(p,e)w(p,e,s)+pT(p,6)—ap e—ae ,  (14)
where
Y(p, €)=Y (pe,1) (15)
p’ as p’ b )
Wp,e)=2%(pe1) (16)
p’ as p’ b .

The transformation functions may be integrated forward
from s =1 tos =1+b for |b| << 1 to yield

u(p,&,s)=1+Y(p,e)b=sTP (17)
w(p,e,s)=1+W(p,e)b=s"Pre (18)

It becomes clear that the functions Y(p,e) and W(p,e)
are generators of the infinitesimal transformations.

While these transformation functions already have a
large number of constraints imposed upon them, they are
still very general. A trivial transformation that would
“scale” any transformation would be u(p,€,5)=1 and
w(p,e,s)=n(p,e)/n(p,e/s). It 1is clear that this
definition satisfies all the group constraints, and yet will
trivially scale any function arbitrarily. Scale invariance
must be imposed upon the transformation functions and
thus on the distributions. Coniglio [14] showed that the
appropriate power-law form implied that the generating
functions must be invariant under their own transforma-
tions. We will take that as a starting point in this devel-
opment. In this case, the group equations are

|

T(s)Y(p,e)=7Y |pu(p,e,s) =Y(p,€) , (19)

’
N

T(s)W (p,e)=W pu(p,e,s>,§ =W(pe). (20

The differential form of the above equations is
oY oY

oI 9% = 21
€ e +pY a o, (21)
oW oW

—— _— . 22
€ e +pY o 0 (22)

The above equations may be integrated along the charac-
teristics defined by

eg%L:—)—=—pT(p(e),e) . (23)

Substituting this into the partial-differential equations

(PDE’s) yields
dY(p(e),€) =0

de , (24)
dW(dg(:),e) 0. 25)

which implies that the generators are constants along the
characteristics. Substituting this back into the charac-
teristic equation, it follows that

402 — —x(p(e)e) 26)
or
p(E):p(l)e'_Y(p(])’” . 27)

The differential group equations may be solved along
the same characteristics. Substituting the equation for
the characteristic into the equations for # and w yields

du(p(e),e,s)

Sau(p(e),e,s) _

3¢ + 3 Yu =0,
c dw(p(e),e,s) +s ow(p(e),e,5) Ww =0,
de ds
which may be rewritten
a 5] _
€ 3¢ +sas (Inu —YIns)=0,
d d —
le 3¢ +s 3s (Inw — Wilns)=0 .

These equations have solutions of the form

Inu —YIns =¢(Ine—Ins) ,
Inw — Wins = ¢,(Ine —Ins)

for some ¢, and ¢,. This function may be determined
from the boundary condition at s =1. Then

¢,(Ine)=0,

¢,(Ine)=0,

which, when substituted back into the solution, yields
u(p,es)=s_YPe (28)
w(p,e,s)=s "pe (29)

From the preceding, it becomes clear that the genera-
tors Y and W may be associated with the Holder singu-
larity exponents a and the Hausdorff-Besicovitch dimen-
sions f (a), respectively. However, the identification is
not between measures on a ball i EI" as € changes, but
rather a characteristic curve that describes scale invari-
ance within a family of distributions related through scale
invariance to each other as € changes. This further asso-
ciates these exponents and dimensions with the scaling
generators for a distribution. These generators have a
definition and a role even in the pathological case where

" the Legendre-transformation definition does not extract

the extremum along the exponent under the moment in-
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tegral, which is the traditional way of operationally
defining the Holder exponents and the Hausdorff-
Besicovitch dimensions.

III. SCALING OF THE MOMENT INTEGRALS

In this section we apply the scaling transformation
developed in Sec. II to the moment integrals. We show
that the invariance of the generators under their own
transformations is the central reason why the moments
reveal scale-invariant power-law behavior.

The scaling of the moment integral Z(g,e) has the
form

T(S)Z(q,E):Z q,§ S(q—l)D(q)
:quSW(p,e)n psT(p,E),E d{psY(p,e)} )
s
(30)
The substitution y =psT(P’5)=psY(y"/‘) or p=ys —Y(r.€/s)
yields
T(S)Z(q,6)=Z q’s s(qﬁl)D(q)
s
___f{ys~T(y,e/s)}qsW(y,s/s)n y’§ dy
:fsW(y,e/s)qu(y,e/s)yqn y,f dy . (31)
Along the contours defined by
a=Y(p,e)=Y(y,€e/s), (32)
fla)y=W(p,e)=W(y,e/s), (33)

where p =p(a,€) and y =p(a,€/s), limits for both large s
and s =1+b for |b| <<1 may be applied. For the large-s
limit, it follows that the integral will be dominated by
those values of a such that the exponent of s will be
maximum. It follows that the standard Legendre-
transformations result, namely

(g —1)D(q)=f(alq))—qalqg) , (34)
d{(g—1)D(q)} _
da alq) . (35)

The values of p(a,e) may be obtained by examining the
integral with small s. In that case, the integral will be
dominated by the extremum of the distribution, namely

dpn(p,e)

p =0. (36)

p=plalq),€)

The above arguments show clearly that the power-law
form can be extracted from under the integral only be-
cause (1) the transformation functions are power laws,
and (2) the exponents remain constant along the con-
tours. It is only by parametrizing the transformation
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function by the contours that the association between the
dimensions D (g) of the moments and the generating
functions can be constructed. Without this invariance,
the same kind of paradox derived by Cates and Deutsch
[17] would emerge here. A corollary to that is the sug-
gestion that this technique may be extended to guarantee
the invariance of scaling transformations in the more
complicated situations where the traditional ad hoc for-
mulation fails.

IV. SCALING OF MULTIFRACTAL SPATIAL
CORRELATIONS

One of the strongest demonstrations of a formalism is
to show that it solves a problem that has persisted in the
field for a long time. An example of this is the Cates and
Deutsch incompatibility [17]. In their case, they were in-
terested in deriving the scaling form for spatial correla-
tions of moments of multifractal measures both from a
blob technique, and via a hierarchy of singularities, try-
ing to extend the arguments of Halsey, Meakin, and Pro-
caccia [4]. They found that the various scaling parame-
ters from the blob arguments did not extremize in the
Legendre-transformation space, imposed by the hierar-
chy of singularities picture, in a way that would separate
the exponents of the various scaling parameters. This
suggests that either the hierarchy picture, or the blob pic-
ture, or both are not scale invariant.

From the perspective of this study, scale invariance of
the transformation functions is the starting point. The
problem is that the scaling Ansatze derived by Cates and
Deutsch are not scale invariant; they do not form a prod-
uct group with generating functions that satisfy the con-
straints required to guarantee the power-law scaling of
the moment functions. It is not clear from the structure
of the arguments presented in Cates and Deutsch exactly
where the noninvariant transformations are introduced,
since elements from both the hierarchical picture and the
blob picture are present in the integral to be extremized.

At the same time, reconciling both the scaling of the
moments with the scaling of the distribution is important.
In the context of Cates and Deutsch, the scaling of the
spatial correlations of the moments was handled by the
blob arguments. The scaling of the distribution was han-
dled by the hierarchic picture. Cates and Deutsch con-
cluded that the two pictures are incompatible. However,
the problem is more significant than that. Since the
correlation functions may be expressed in terms of in-
tegrals over the distribution, it is necessary to resolve the
scaling of both sides of the equation. It is paradoxical
that the correlation of moments would be scale invariant
and the distribution would not be or vice versa. We will
identify this inconsistency as a paradox.

In this section the problem will be approached using
the scaling-group techniques presented in Secs. IT and III.
It does not assume anything about blobs or hierarchical
singularities. Instead, it assumes only that there are scal-
ing transformations and proceeds from that point to
derive relationships between them. It will be seen that
the scaling groups produce results that guarantee scale
invariance, and produce consistent power-law scaling
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forms for the moment correlation functions. that the products of the p’s separated by £ be averaged.

First, the moment correlation function is defined In order to explore the spatial dependence of multifractal
measures, a distribution function must be constructed
that reflects the spatial dependence of the measures.
However, again, there will be no identity between balls at

C(qx,q2,§,6)=71\,-<fddqu‘(x,e)pqz(x+§,€)>
one € with those at another €. It will be necessary to ex-

F)

37) amine the behavior only of the distribution of measures
at different length scales.
This requires that, for any one covering on balls of size ¢, As before, the average can be expressed as an integral
J
C(ql,q2,§,e)=#m ﬁdﬂd(f)fddxpq‘(x,e)pqz(x+§,e)p(x,e)p(x+§,e) , (38)

which can be integrated out
—_1 2y [ 745 n? q
C(q1,92,6,€)= Na, $d, &) [dxp” (x,e)p”(x+E €)p(x,e)p(x+E,€)

=—N—‘@sﬁd0d<§)fddxfdpl [dp.p1'p3*8(p, —p(x,)8(p, —p(x+§,€))p(x,€)p(x+£,€)

=fdp1fdpzp‘f’pgzﬁﬁdﬂd(f)fddxﬁ(pl—p(x,e))S(pz—p(x+§,e))p(x,e)p(x+§,e) .
d
The distribution function may be identified as
"(Plypz,g,f)dpldpzz—N}) $a0, (&) [dx8(p,—p(x,€)8(p, —p(x+E €)p(x,€)p(x+E,€)dp,dp, - (39)
d

The moment correlation function is then

C(ql’qzvgie):fdplfdpzp‘lhpgzn(PI!pz’g’e) . (40)

Since there is an integral relationship between C and n, it follows that the scaling of each of these elements must be
compatible. Besides representing two pictures of multifractals, the Cates and Deutsch arguments reflect the scaling of
each side of the above equation. The blob arguments describe the scaling of the left-hand side, and the hierarchical pic-
ture describes the scaling of the right-hand side. It is not enough just to invalidate one picture or the other. The formu-
lation must be consistent on both sides of the equation. The fact that they derived an inconsistency reflects a very seri-
ous and fundamental problem with the formulation.

The scaling form for this distribution is

€

Plulyl’zuz»g"s‘

Pi1uy,prUy

P1:P2

T(s)n(py,py,&,€)dp,dp,=wn J dp.,dp, , (41)

where w, u,, and u, are all functions of (p,,p,,&,€,s). These must also satisfy the group equations, which in functional
form are

ul(pl’p2’§’€’1)21 ’ (42)
uz(Pl’szg,f’l)zl ’ (43)
w(py,py,6,61)=1, (44)
€
u(p1,02,6,6515)=u(p,p2,6,65)uy |p1u1(p1,P2,6,651) aquz(Pth,g,f’ﬁ),gy's—lrsz ) (45)
€
Uy(P1,P2,6,6,5152)=uy(p1,py, 6,651 )u; Plul(Pl’P2,§y€,S1)7P2u2(P1,P2,§,6,S1),§,;T,Szl , (46)

w(p]’stgae’sls2)=w(Phpzyé_yf,sl w

€
P11 (P1,P2,6,65) »quz(PpPz’g’f:Sl)75’;,52 ] . (47)
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The differential form of the group equations is

du, du Ou ou,
S—a——T1u1+P1Y1 3p, +P2Y2 3p, €3¢ (48)
ou, du du, du,
sa——T2u2+p1T1 3, +P2T2 3p, —€ %€ ’ (49)
s%s——Ww +p1Y1§ +p,Y, gpw —e-%% , (50)
where
au1
Y, =—7 3 (p1:p2,€6 1) (51)
. Ou,
T2=—as—(p1,p2,§,e,l) , (52)
W=a—w(p1,p2,§,e,1) . (53)
as

The scale-invariance conditions, analogous to those
developed in Sec. II, expressed in functional form are

‘ €
Yi(pi,p2,6€)=" Plul,quz,g,; , (54)

€
Yyp1,p02,6,€)=, pluppzuz,é:] s (55)
W(pl7p2?§’e):W p1u17p2u2’§’§ ) (56)

which have the differential form

Nt LS WS W (57)

pl ap PZ 28p2 € ae VY,
v oY 2 - aY, aTz —o (58)

Privg,’ Yap, Cde

1.4 1.4 oW
Y +p,Y —=0.

P 18 )2 zap —€ 3¢ (59)

These equations may be solved using the method of
characteristics, by choosing the £§-dependent characteris-
tics

dpl(f)
S =—p,Y(p,(€),p,(€),E€), (60)
J
Pi¥1,Pala | g ¢
C(quqzagye fdplfdpl‘] 11p22wn
. . _ Y (py.py,6€) _
Making the change of variable y, =p s and y, =

_ W(y,,y,,6€/s)—q, Y —q q, 9
Clq1,95.6 €)= [dy, [dy,s” """ Yyt
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dp,(€)
e =—p,Y,(p,(€),p,(€),§,€) . (61)

Along these characteristics, the partial-differential equa-
tions reduce to

dY( ,P2(€),&,€) ’
. pi(€),p,(€),8,€ =0, (62)
de
dT( ,
2p(€),p,(€),8,€) ~0, (63)
de
dW(p,(e),p,(€),&,€)
—e p‘edizeée =0 . (64)

So, along the characteristics, Y, Y,, and W are all con-
stant. The form of the differential equations for u,, u,,
and w along the characteristics p; =p,(€) and p,=p,(€)
are

ou, ou,
SK—FG 3 —Y,u,;=0, (65)
du, ou,
Sy +e—a———T2u2=0 , (66)
s%—f—%e%’f—Ww =0. (67)

These may be solved in the same way that the simpler
equations were solved for the simple multifractal case.
The solutions are

Y (pi,p,,E €)

Uy (pyspyyEres)=s IO (68)
Yy(p,pys & €)

u (p13p2y§,6’5)=s 2P1P2§5 ’ (69)
W(py,py,6:€)

w(p;,py,&,€,5)=s (70)

Next, the scaling of the correlation moments must be
derived. First, the moments may be expressed in terms of
n by writing

C(g1,926€)= [dp, [dp.p{'p3n(p,.ps. 6 €) .

The scaling form for this kind of expression will be

—D(q,,4,,8)
Clg1a060=Clanee S s * 7 ay
Substituting the scaling forms into the integral yields
€
P1u1:P2u2,§,;‘] . (72)

Yylpy:py,6.€) .
2T the integral becomes

€
p1u17p2u29§’;] > (73)
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where the Jacobian simplified to unity by the substitu-
tion. For s ~O(1/€), the integral will be dominated by
the extremum of the exponent of s. Defining the charac-
teristics

Yy, (a,a&€),y,(a,a58,€),€€)=a; , (74)

Yoy (a,a,8,€),p,(a,ay,6,€),€,€)=a, , (75)
with the spectrum function defined
flay,a,8)=W(y(a;,a8,€),y,(ay,a,8,€),8,€) , (76)

which will also be constant along the characteristic con-
tour since Y, Y,, and W are e-independent along the
characteristic contour. The exponent extremizes where

af (aj,ay§)

_—3—;-2——‘“1(‘11’qz’§>’az(qpqz,§),§)=q1, an
1

af (aj,ayé)

_Sla—zi_"(al(‘h,‘h),az(ql,qz),§)=q2 . (78)

Ay Yn(y 1,6 €/5)

ay;]lygzn (y1,}72,§,6/5)

Scale invariance is guaranteed in the above formula-
tion. The € dependence is completely removed from be-
ing the kind of problem it posed in the Cates and
Deutsch paradox [17]. Further, the details of the &
dependence are not dictated by the behavior of the scal-
ing of the p’s on the balls as € changes, but is left as an
open function dependent on the other details of the sys-
tem being considered, which can have a nontrivial behav-
ior completely separate and distinct from the behavior of
some otherwise arbitrary measure on the system.

V. CONCLUSIONS

One of the dominant features of multifractal scaling
has been the ad hoc nature of the constructions of the
scaling forms. The distributions of the multifractal mea-
sures were always present at least implicitly, yet few stud-
ies have focused on the kind of detail that would be re-
quired to obtain scaling collapse of the distributions.
Further, when pathological situations arose in the stan-
dard techniques of defining or measuring the Holder ex-
ponents and Hausdorff-Besicovitch dimensions, the ten-
dency has been to proliferate more dimensions. Lastly, it

ayl ](y,.y2)=(y1(ql,q2,§,s/x),y2(ql,qz,g,s/s))

ayz ’(yl,yz)=(yl(q],q2,§,e/s),y2(q],q2,§,e/s))
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Then, it follows

D(q,,9:,6)=q,a,(91,9,,)+q,2,(q;,9,,§)
—fla(qy,92,8),25(q1,9,,6),8) , (79

OP(a1928) _ 0k (80)
34, 191,92,5)

aD(q,,495,€)

—1—2—:‘12(41,‘12’5) . ®1)

dq,

The values of p; and p, associated with each a must be
determined to reconstruct the Y’s and W. This informa-
tion may be obtained by examining the integral in the
limit of s ~1. The integral will be dominated by the ex-

tremum ofy‘f'ygzn(yl »V2,E,€/5). These occur where

=0, (82)

=0. (83)

has been impossible to successfully extend multifractal
scaling to more complicated situations by following this
ad hoc approach. The problems that seem to emerge
with greater or lesser clarity in all these situations in-
volved the problem of the definition of scale invariance.
The task at hand more and more clearly became one of
seeking that definition.

In this development, the association between Holder
exponents and Hausdorff-Besicovitch dimensions and the
generating functions becomes very clear. The exponents
and dimensions are not trivial enough to define in an
ad hoc way, but perform the role of describing the scaling
of the multifractal distributions. They are the functions
that would be necessary to produce a scaling collapse of
the distribution function of the multifractal measures.
Further, we show that the invariance of the generating
functions along the characteristics is necessary if the
Holder exponents and Hausdorff-Besicovitch dimensions
are to even be definable, and for the moment integrals to
be scale invariant. We show that the invariance of the
generating functions is mathematically equivalent to pre-
vious definitions of scale invariance in the context of mul-
tifractal scaling. Lastly, by successfully extending this
definition to the problem of correlations of moments of
multifractal measures, thus solving a long standing prob-
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lem, we show that the usefulness of the definition goes
beyond the context of simple multifractal scaling. From
these results we conclude that the invariance of the gen-
erating functions under their own transformations of the
multifractal-scaling-transformation functions is a funda-
mental principle in defining multifractal scale invariance.
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